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Deformation due to hydrodynamic interactions between two deformable buoyant 
drops may result in the alignment and coalescence of horizontally offset drops. 
Three-dimensional boundary integral calculations are presented for systems contain- 
ing two, three or four drops and it is argued that the interactions which occur 
between three drops or four drops may be characterized qualitatively by the two- 
drop interactions. In a dilute monodisperse suspension, the rate of coalescence 
of deformable drops is calculated using far-field analytical results and is found to 
be proportional to the Bond number. The rate of coalescence in a dilute poly- 
disperse suspension of bubbles in corn syrup is determined by performing a large 
number of laboratory experiments for Bond numbers based on the larger bubble 
radius 15 < 93 < 120. The rate of coalescence is enhanced (by a factor of 10 
for A? = lo), owing to the effects of deformation, compared to the predictions of 
models which include hydrodynamic interactions and van der Waals forces among 
spherical bubbles. The rate of coalescence is greater than the rate predicted by the 
Smoluchowski model which ignores all hydrodynamic interactions. The experimental 
results are used to calculate the evolution of the bubble size distribution in suspen- 
sions using a standard one-dimensional population dynamics model; deformation 
affects the size distribution in suspensions, resulting in a wider range of bubble 
sizes. 

1. Introduction 
We are interested in studying the rate of coalescence of deformable particles in a 

suspension in order to calculate macrophysical properties such as the particle size 
distribution and the average sedimentation rate. A typical approach to calculating 
macrophysical properties involves using population dynamics models which require 
an understanding of the interactions among the many particles in the suspension. 
The detailed hydrodynamic interactions and physicochemical effects among particles 
are microphysical properties which govern coalescence. Previous theoretical studies 
of low Reynolds number dilute suspensions of spherical particles have considered 
the interactions due to Brownian motion and van der Waals forces, gravitational 
settling (Zhang & Davis 1991), interfacial tension variations due to surfactant or 
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thermocapillary effects (Satrape 1992; Zhang & Davis 1991), or a combination of the 
above (e.g. Zhang, Wang & Davis 1993). 

We extend the above studies by considering the effects of deformation on the 
evolution of particle size and concentration in dilute suspensions of buoyant particles. 
Deformation is characterized by the Bond number 

where a is a particle radius, A p  is the density difference between the particle and the 
external fluid, 0 is the interfacial tension, and g is the gravitational acceleration. The 
Bond number represents the ratio of buoyancy forces to interfacial tension forces. We 
assume that the Reynolds number is small, 

where p and p are the external fluid density and viscosity, respectively, and U is the 
particle’s translational speed. Manga & Stone (1993) have shown that deformation 
has a significant effect on low Reynolds number drop interactions for A$ > O(1). 
We also assume that the Phclet number is large so there is negligible Brownian 
motion. Other effects such as Ostwald ripening and interfacial tension variations are 
neglected. 

1.1. Interactions between two deformable drops and bubbles 
The interactions between two drops model many two-body interactions common to 
multiphase sedimentation processes - a quantitative understanding of two-particle 
interactions is the starting point for theoretical studies which attempt to characterize 
the behaviour (e.g. sedimentation rate and coagulation rate) of suspensions. Manga 
& Stone (1993) presented photographs of experimental results and two-dimensional 
numerical calculations which demonstrated that two deformable, horizontally offset, 
buoyant drops or bubbles interact in a manner which promotes vertical alignment 
and coalescence. In figure 1 we present two sequences of photographs, similar to those 
presented in Manga & Stone (1993), which illustrate two distinct ways in which offset 
air bubbles may interact in a Newtonian fluid at small Reynolds numbers (9 w lop3) 
and large Bond numbers (9 = 20). The experiment in figure l(a) illustrates a process 
we refer to as coating, in which the smaller leading bubble spreads over the surface 
of the larger trailing bubble. The experiment in figure l(b) illustrates a different 
process we refer to as entrainment, in which the smaller bubble is advected around the 
larger bubble and is ‘sucked’ or entrained into the larger bubble. Coalescence occurs 
between the last two photographs shown in (a)  and shortly after the last photograph 
shown in sequence (b). The difference between the two experiments is that the initial 
horizontal separation distance is sufficiently large in figure l (b )  that coating does not 
occur. Clearly, for sufficiently large horizontal offsets, the smaller bubble does not 
coalesce with the larger bubble. 

The importance of deformation on drop dynamics at low Reynolds number may 
be highlighted by noting that for two spherical particles, observed relative to the 
larger one, the smaller sphere is advected around the larger sphere, as illustrated 
in figure 2(a). A qualitative explanation for the alignment of deformable offset 
bubbles (figure la )  is illustrated schematically in figure 2(b). Alignment occurs 
since the effect of hydrodynamic interactions is to deform the trailing bubble into 
a prolate shape, suitably inclined with respect to the vertical; the leading bubble 
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FIGURE 1. Interaction and deformation of two air bubbles rising in a large container of corn syrup: 
(a) alignment and (b)  ‘suction’ or entrainment of bubbles which are initially horizontally offset. The 
Reynolds number 92 !Z = 20. Times and a scale bar are shown on 
the photographs. Coalescence occurs between the last two photographs shown in (a) and shortly 
after the last photograph shown in sequence (b) .  

and the Bond number 

is deformed into an oblate shape. The inclined shapes lead to small horizontal 
components of translation which tend to align the bubbles. Thus, even equal- 
sized deformable bubbles interact in a manner leading to eventual coalescence. The 
second type of two-bubble interaction (figure l b ) ,  in which the small bubble is first 
advected around the larger bubble and then sucked in from behind, arises due to 
the deformation of the larger bubble. The entrainment dynamics result from the 
continual deformation of the larger bubble so that in a frame of reference moving 
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RGURE 2. (a)  Illustration of the interaction of spherical particles: relative to the larger sphere, the 
small sphere is swept around the larger one. (b)  Illustration of the alignment process: undeformed 
spherical shapes are shown with dashed curves and deformed shapes are shown with solid curves. 
The stress field produced by one particle deforms the other particle leading to a horizontal 
component of translation and thus alignment. (c )  Streamlines, calculated relative to the larger drop, 
for a pair of translating and deforming axisymmetric drops. The calculation uses the boundary 
integral method. The drops have the same viscosity as the surrounding fluid; &? = 50. This figure is 
a compilation of results presented originally in Manga & Stone (1993). 

with the larger bubble, streamlines intersect the interface and a vortex or wake is 
generated behind the bubble (even at zero Reynolds numbers). To illustrate this 
mode of interaction, in figure 2(c) we show numerically computed streamlines for 
a pair of translating drops which have the same viscosity as the surrounding fluid 
and 9Y = 50. The continual deformation at the back of the leading drop results in 
closed streamlines which leave and re-enter the drop defining a vortex which may 
entrain a trailing drop. At higher Reynolds numbers alignment may also occur for 
two spherical bubbles owing to the formation of a low-pressure wake (de Nevers & 
Wu 1971). 

1.2. Paper overuiew 
In this paper we employ numerical simulations, laboratory experiments and popula- 
tion dynamics models to study coalescence of drops and bubbles in suspensions. In 
$2 the buoyancy-driven translation and deformation of drops in systems containing 
two, three or four drops are calculated, and it is suggested that the interactions in 
‘clouds’ of drops may be qualitatively described by two-drop interactions. A theoret- 
ical framework suitable for modelling coalescence in dilute suspensions is described 
in $3, and the coalescence rate, accounting for deformation, in a dilute monodis- 
perse suspension is derived in $4. Next, in $5, the coalescence rate of bubbles in 
a dilute polydisperse suspension is determined experimentally as a function of the 
Bond number and relative bubble sizes. Finally, in $6, a one-dimensional population 
dynamics model is used to calculate typical bubble size distributions in suspensions. 
We demonstrate that deformation has two effects: first, the rate of coalescence is 
increased, as suggested from the experimental results shown in figure 1, and second, 
the size distribution is characterized by a wider range of sizes if the dispersed phase 
is allowed to deform. 

2. Two drops, three drops and four drops 
In this section we consider numerically the interaction of pairs of three-dimensional 

offset drops. We then consider the interaction among drops in systems containing 
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FIGURE 3. Two-drop geometry. 

three and four drops. The results demonstrate that two-drop dynamics qualitatively 
describe the interactions in systems with more than two drops. We begin with a 
short scaling analysis which will allow us to better understand some of the features 
characteristic of drop interactions and deformation. 

2.1. Scaling analysis 
Consider two spherical drops with radii a1 and u2, separated by distance d, with 
d /a  >> 1, as shown in figure 3, where a with no subscript denotes a typical radius. 
Each drop rises, to a first approximation, as though alone in an unbounded fluid. 
The rise speed of drop i as a function of the viscosity ratio A is given by the 
Hadamard-Rybczynski result 

i = 1,2. 
2(1 + A) Apaf 
3(2 + 31) 7 9, up’ = - 

Each drop creates a velocity field 

where 

To leading order, the correction to the rise speed of each particle is described by 
the first reflection (a ‘push’ on the leading drop by the trailing drop and a ‘pull’ on 
the trailing drop by the leading drop). The additional speed of drop 1, 6U1, due to 
the second particle is given by 

and the additional speed of drop 2, SU2, is 



236 M .  Manga and H .  A.  Stone 

The velocity field created by a translating drop, described by equations (2.2) and 
(2.3), creates velocity gradients which deform nearby drops. Let ei measure the small 
distortion away from a spherical shape, and let 99, = Apga:/o be the Bond number 
for drop i. The far-field velocity gradient generated by drop 1 in the vicinity of drop 
2 is O ( U l a l / d 2 ) .  A balance of viscous stresses, O(pUlal /d2) ,  by the interfacial tension 
stresses of drop 2, O(e2o/a2), which tend to keep the drop nearly spherical, leads to 
a small shape distortion of drop 2 with magnitude 

A similar analysis for drop 1 gives 

Since the magnitude of deformation is O(Ba2/d2) ,  it follows that the correction to 
the rise speed is O( U(0)99'a2/d2), where U(O) is the Hadamard-Rybczynski rise speed. 
Also, the relative magnitude of distortion of the two drops is 

Thus, (surprisingly) the smaller drop will be more deformed than the larger drop, as 
seen in the experiments shown in figure 1. 

2.2. The boundary integral method 

The numerical solution of three-dimensional free-boundary problems is difficult ; 
most previous studies for either low or high Reynolds numbers have focused on 
a single deformable drop or bubble (although Unverdi & Trygvasson 1992 have 
studied interactions between two drops). Previous low Reynolds number studies have 
considered the deformation of neutrally buoyant drops in shear flows in the limit of 
modest shape distortions (e.g. Rallison 1981 ; Kennedy, Pozrikidis & Skalak 1993; 
deBruijn 1989). Below we present three-dimensional numerical calculations of the 
buoyancy-driven translation of multiple drops which we believe are the first for low 
Reynolds number buoyancy-driven interactions, and the first simulations to consider 
large interface distortions. The numerical method involves discretizing the drop 
surfaces by a mesh of 3200 triangular surface elements and a grid of 382 collocation 
points. Details of the numerical procedure and implementation are discussed in 
Appendix A. Since the three-dimensional calculations are computationally intensive, 
the calculations reported here took 5-10 days on a Sparc 2 workstation, calculations 
are performed for drops with the same viscosity as the surrounding fluid (A = 1). 
The Bond number reported is based on the radius of the larger trailing drop, time is 
normalized by an advective timescale, p/Apgal ,  where a1 is the radius of the larger 
drop, and lengths are scaled by a l .  

2.3. Two drops 

In figures 4-6 we show cross-sections of the interface shapes for buoyant translating 
drops at different times. Figure 4 shows the effects of changing the Bond number; 
figure 5 shows the effect of the initial horizontal offset (i.e. the horizontal distance 
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RGURE 4. The effect of interfacial tension (Bond number) on the alignment of three-dimensional 
offset drops for Bond numbers of the larger trailing drop B = 1, 10 and 100 ; ,I = 1, aZ/a1 = 0.5. 
Cross-sections of three-dimensional shapes are shown. Drop trajectories are shown in the lower 
figure. Time is normalized by an advective timescale, p/Apgal, where a1 is the radius of the larger 
drop. 

between centres of mass); figure 6 shows the effect of the relative drop size. Corre- 
sponding to the simulations shown in figures 4-6, trajectories of the centres of 
mass of the two drops are also presented, which allows an improved quantitative 
understanding of the importance of deformation and relative drop orientation. 
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Frcm 5. The effect of initial horizontal offset on the alignment of three-dimensional offset drops 
for initial horizontal offsets of 0.5U1, 0.9~11 and 1 . 3 ~ ;  B = 10, 1 = 1, az/al = 0.5 (Bond number 
based on the radius of the larger drop). Cross-sections of three-dimensional shapes are shown. 
Drop trajectories are shown in the lower figure. 

2.4. Eflects of interfacial tension (Bond number) 
In figure 4 we present three simulations for the same initial condition but different 
Bond numbers: 93 = 1, 10 and 100, ;1 = 1, and a*/aI = 0.5. For 98 = 1 the 
drops remain nearly spherical and the small drop does not coat the larger drop, 
whereas for B = 100 the small drop is flattened by the trailing drop and coating 
occurs. The thickness of the fluid film trapped between the drops also decreases most 
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FIGURE 6. The effect of relative size on the alignment of three-dimensional offset drops for size 
ratios (u2/a1) of 0.75,0.5 and 0.25; I = 10, I = 1 (Bond number based on the radius of the larger 
drop). Cross-sections of three-dimensional shapes are shown. Drop trajectories are shown in the 
lower figure. 

rapidly for the B =  1 simulation, similar to the observations for axisymmetric drops 
(Manga & Stone 1993), since increased deformation characteristic of larger Bond 
numbers requires fluid between the drops to be squeezed over a larger surface area. 
From the trajectories shown, we observe that the larger trailing drop for 39 = 100 
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experiences the greatest horizontal drift, due the larger shape distortions. The effects 
of deformation on the trajectories of the small drops are less noticeable since the 
distortional contribution to the rise speed is small compared to the first reflection, 
equations (2.4) and (2.5). 

2.5. Efects of horizontal orffset 
In figure 5 results are presented for initial horizontal offsets of 0.5~1, 0.9~1 and 1.3~1; 
B = 10, = 0.5 and il = 1. As the initial horizontal offset is increased the 
magnitude of deformation decreases. However, the magnitude of deformation also 
depends on the relative orientation of the drops and a more detailed analysis shows 

where d  ̂ is a unit vector joining the centres of the two drops and @ is a unit vector in 
the vertical direction (Manga & Stone 1993). From the drop trajectories, we observe 
that as the initial horizontal offset increases, the translation distance over which the 
large drop overtakes and passes the smaller drop decreases. 

2.6. Efects of relative drop size 
Finally, in figure 6, results are presented for size ratios a2/a1 = 0.75, 0.5 and 0.25; 
98 = 10 and il = 1. The initial horizontal offsets between the centres of mass of the 
drops are identical in all three simulations. From the drop shapes we observe that 
as the relative drop size decreases, the likelihood of alignment, which is a good first 
indicator of coalescence, decreases: for a2/a1 = 0.75 the small drop coats the larger 
drop whereas for a2/a1 = 0.25 the small drop is advected around the larger drop. We 
also note that, as in the previous results, the magnitude of deformation of the small 
drop is always greater than that of the larger drop, as expected from equation (2.8). 
From the drop trajectories we observe that the horizontal translation of the larger 
drop in the simulation with a2/a1 = 0.25 is small since the contribution of the first 
reflection to the rise speed of the larger drop is small. 

2.7. Three drops 
In figure 7 we present calculated cross-sections of interface shapes for three different 
simulations of three-drop interactions, with initial conditions chosen such that all 
three drops lie in the vertical plane. The initial configurations are different for the 
three simulations, and in each case 98 = 10, 2 = 1, and all the drops have the same 
radius. In the simulation with three initially equally spaced horizontally aligned drops, 
the middle drop translates faster than the two outer drops. As for spherical shapes, 
the rise speed of the middle drop is largest owing to the sum of the first reflections 
characteristic of drop interactions: the first reflection for the middle drop gives rise 
to a 5Uco)a/4d correction to the rise speed, whereas the rise speed correction of the 
outer drops is smaller, 15U(')a/l6d. The deformed drop shapes are consistent with 
predictions based on figure 2(b): the middle drop is squeezed by the flow created by the 
outer two drops (so that it becomes elongated in the vertical direction and extended 
in a direction perpendicular to the page) whereas the outer drops are extended in a 
direction approximately aligned with a line joining the outer drops with the middle 
drop. 

To leading order, the magnitude of drop deformation is O(9a2/d2) ,  but also depends 
on the relative orientation of the drops, as illustrated by equation (2.9). The effects of 
orientation are evident in the simulations in figure 7(b,c) with initially vertically offset 
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FIGURE 7. Shapes of three-dimensional drops, for three equal-size drops with different initial 
vertical offsets but identical horizontal offsets; = 10, 1 = 1. Cross-sections of drop shapes are 
shown. 

drops. In both simulations the middle drop is deformed primarily by the left drop 
even though the separation distance between the middle and right drop is less than 
the separation distance between the middle and left drop. We note that the deformed 
drop shapes for the middle and left drop are similar to the Shapes in simulations 
with only two drops, such as in figure 11 (shown later). The effects of relative drop 
orientation on the detailed translation of the drops is highlighted by the trajectory 
plots : for example, contrast the opposite horizontal displacements of the right-most 
drop in simulations (b)  and (c) for which the change of the initial vertical offset is 
one drop radius. 

2.8. Four drops 
In figure 8 we show three simulations of four-drop interactions, with four drops 
placed on the corners of a square in the vertical plane; 93 = 1, 10 and 100, A = 1. 
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FIGURE 8. Interaction of four three-dimensional drops initially forming the sides of a square, for 
four equal-size drops with D = 1, 10 and 100; 1 = 1. Cross-sections of drop shapes are shown. 

The evolution for four spherical particles can be deduced by considering the first 
reflections: the two lower spheres approach each other, the two upper spheres move 
away from each other, and the two lower spheres rise faster than the outer spheres 
so that they rise and form a horizontal line with the upper spheres; the two middle 
spheres continue to rise faster than the outer spheres and move apart while the 
two outer spheres approach each other; a configuration identical to the initial con- 
figuration will then arise; however, the lower spheres will have replaced the upper 
ones. The evolution of the system will continue and the motion may be described 
as ‘leap-frogging’ (e.g. Hocking 1964; Durlofsky, Brady & Bossis 1987). If the 
particles are deformable, the simulations shown in figure 8, the drops may coalesce 
without ‘leap-frogging’. Again, the importance of the relative orientation of the drops 
on the shape and magnitude of deformation is apparent in figure 8. Qualitatively, 
the interaction between the right two drops is largely unaffected by the left drops 
(compare the simulations in figure 8 with the simulations presented later in figure 

Overall, the results presented in this section demonstrate that vertical offsets have a 
more significant influence on deformation and translation than equivalent horizontal 
offsets (as may be expected from the point force response, equations (2.2)-(2.3)). 

11). 

3. Coalescence in suspensions 
Below we provide an overview of a method for determining the evolution of particle 

size and concentration in dilute suspensions. The method involves first estimating 
the collision or coalescence rate of two particles, and then developing a population 
dynamics model. 
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3.1. Collision-frequency function 
For a dilute suspension we make the standard approximation that only two-particle 
interactions need to be considered since the probability that a third particle will affect 
the dynamics is small. The rate at which spherical particles with radius ai collide with 
particles with radius aj is given by the collision-frequency function Jij  (e.g. Davis 
1984) 

pij(r)(ui - u j )  * i dS, (3.1) J . .  - -n.n. 
1 1 -  1 1 s  

r=ai+aj 

where ni is the number of particles of size ai per unit volume, pij (r)  is the pair- 
distribution function which represents the probability of finding a particle of size i 
between r and r + dr with respect to the position of particle j ,  ui - u j  is the difference 
in velocities of particles with radii ai and aj, and i is a unit vector in the direction of 
r .  For notational convenience we assume that aj is the radius of the larger of the two 
drops. 

The pair-distribution function pi j  satisfies a conservation equation 

apij  - + v - ( P i j [ U i  - U j ] )  = 0. 
at 

In the limit that Irl -+ 00, one boundary condition on the pair-distribution function is 

pij (r)  -, 1 as ( r (  -+ 00, (3.3) 
since the suspension has particles uniformly distributed at large distances. At r = 
ai + aj  the drops are in contact, and are thus assumed to coalesce, so that 

pi j ( r )  = 0 at r = ai + aj .  (3.4) 
If the particle size and number distribution remain nearly constant at a given 

position in the tank then we can make a quasi-steady approximation, which simplifies 
(3.2) to 

Applying the divergence theorem to the collision-frequency equation (3.1) we find 
v (Pi j  [Ui - V j ] )  = 0. (3.5) 

J . .  IJ - - n.  rnj / V * (p(r)ij[ui - uj])dV - ninj / p(r)ij(ui - v j )  * i d s .  (3.6) 

The first integral vanishes identically because of the quasi-steady approximation, and 
the collision-frequency function simplifies to 

r=a;+aj r=m 

J . .  - -n.n. (ui - u j )  - 3 dS, (3.7) 
' I -  Jl=, 

where we have applied the boundary condition on pij(r) at infinity. 
The collision-frequency function determined from the integral (3.7) involves an 

integration over the surface at infinity, S,, enclosing all possible drop trajectories 
which result in coalescence. The surface S ,  can be described as a circle or disc 
of radius y,, such that all drops with horizontal separation distances less than y ,  
coalesce, and all drops with horizontal separation distances greater than y ,  do not 
coalesce (see figure 9). Neglecting the effects of deformation on the rise speed, since 
ui - u j  -+ U r )  - U$ as r -+ 00, the rate of coalescence is given by 

Jij = ninjn(Ui (0) - Uj (0) )y, .  2 

It remains to determine y,. 
(3.8) 
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F~GURE 9. Schematic illustration of the capture radius for interacting drops. The horizontal offset 
ya separates trajectories which result in alignment from those trajectories resulting in entrainment; 
the offset yc separates trajectories resulting in entrainment from trajectories of bubbles which miss 
each other, and thus is the largest offset for which we expect coalescence. 

3.2. The Smoluchowski model 
The Smoluchowski model (Smoluchowski 1917 as cited in Davis 1984) assumes that 
there are no hydrodynamic interactions between particles so that the drops rise 
vertically, thus 

(3.9) 
Hydrodynamically interacting spheres, as shown by previous investigators, have a 

reduced collision rate compared to the Smoluchowski model (even if van der Waals 
forces are included) since small particles tend to follow streamlines around larger 
particles, e.g. figure 2(a). However we will demonstrate that deformable drops not 
only have an enhanced rate of coalescence, but may also have a a collision rate 
greater than predicted by the Smoluchowski model (e.g. the experiments shown in 
figure 1). 

~~j = ninjn(U,!O) - u7’)(ai + aj)2.  

4. Monodisperse suspensions 
In this section we derive a result specific to monodisperse suspensions. Manga & 

Stone (1993) derived an expression for the translational velocity U of two widely 
separated drops, separated by distance d (with d / a  >> l), and valid in the limit of 



Suspensions of deformable bubbles 245 

FIGURE 10. Schematic illustration of the interaction of two deformable drops in a suspension. The 
flow curves shown indicate the local straining motion caused by the centre drop. The effects of 
hydrodynamic interactions result in deformations which leads to a component of translation tending 
to align two drops. 

t=20 63 63 0 

FIGURE 11. Shapes of two three-dimensional drops, for equal-size drops with different initial 
horizontal offsets; B = 10, I = 1. Cross-sections of drop shapes are shown. 
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The second term on the right-hand side is the first reflection for spherical drops. 
Higher-order reflections are O( U(0)a3/d3).  Since the magnitude of deformation of 
each drop, given by equations (2.6) and (2.7), is O(&(a/d)2),  there will be a correction 
to the rise speed with magnitude O( U(o)93(a/d)2) represented by the third term on the 
right-hand side. The derivation of equation (4.1) required a quasi-steady assumption 
for the drop shapes, i.e. that the time for the drops to deform is shorter than the time 
for the two-drop geometry to change significantly. The timescale z d  for deformation 
is 

r d  a( 1 f A)p/o. (4.2) 
while the timescale z, over which the separation distance changes is 

Thus, the quasi-steady assumption requires 

93 < 0 (33’2* (4.4) 

Since two equal-size deformable drops will always be aligned owing to the effects of 
deformation, as illustrated schematically in figure 10, then S ,  is a spherical surface at 
infinity. Substituting the far-field analytical results derived in Manga & Stone (1993, 
$5)  into equation (3.7) and performing the integration over the surface at r = 00, we 
find the collision-frequency function J(a)  for drops with radius a in a monodisperse 
suspension with n drops per unit volume: 

J ( a )  = 47cnn2c(A)a293U(O), (4.5) 

where the function c(A) is defined by equation (5.24) in Manga & Stone (1993). The 
linear dependence on the Bond number highlights the increased rate of coalescence 
produced by deformation of the microstructure. In deriving equation (4.5) we have 
neglected all short-range phenomena such as van der Waals forces which are required 
for the eventual coalescence of particles and we have assumed that the magnitude of 
drop distortion is small so that the perturbation expansion (4.1) is valid. 

In figure 1 1 we demonstrate numerically using a three-dimensional boundary inte- 
gral calculation that the effects of interaction lead to deformed shapes which promote 
alignment, and thus the coalescence of drops, even in monodisperse suspensions. 

5. Collision frequency in polydisperse suspensions 
In a polydisperse suspension, the drops have different sizes, so we need to determine 

the capture cross-section y: as a function of the Bond number 93, the relative drop 
size aj /a i  and the viscosity ratio between the drops and surrounding fluid 1, i.e. 

Throughout the discussion below, we assume ai > aj and the Bond number is based 
on the radius of drop i ,  = Apga?/a. 
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The complex interactions of deformable drops limit the use of analytical results 
and numerical studies to quantitatively determine y,. Numerical calculations are 
prohibitively time consuming since many hundreds of simulations are necessary to 
construct a model. Furthermore, in order to estimate the capture radius y ,  the initial 
vertical separation distance between the drops must be large, which in numerical 
simulations leads to long computation times. In addition, the boundary integral 
numerical simulations are difficult for A # 1 and large interface distortions. The 
analytical results developed in Manga & Stone (1993) are limited to small ellipsoidal 
drop distortions and large separation distances. Hence, we describe an experimental 
approach to determine y, for bubbles (A = 0). 

5.1. Experimental apparatus and procedure 

In order to determine the collision frequency in a polydisperse suspension we per- 
formed a large number of laboratory experiments characterizing the interactions of 
air bubbles in high-viscosity corn syrup in order to develop a model for the coa- 
lescence of bubbles in dilute suspensions. The experimental results presented here 
consider only the limit in which large distortions occur so that the deformation, as 
observed in figure 1, results in the capture and coalescence of bubbles. Interfacial 
effects such as van der Waals forces or the presence of surfactants are important for 
the eventual coalescence of two bubbles ; however, for large distortions, such effects 
will only play a minor role in the rate of coagulation of bubbles. The experiments 
were performed in a large Plexiglas tank with dimensions 61 cm x 61 cm x 122 
cm filled with commercial grade corn syrup, p = 260 Pa s (figure 12). Bubbles were 
injected into the bottom of the tank through a sequence of regularly spaced holes 
fitted with one-way valves and the bubble volumes were measured by calibrating a 
series of syringes. The error in measuring bubble radius was less than 4% and is 
described in Appendix B. Typical bubble radii were 0(1  cm). 

In the experiments, the small bubble was injected first. In order to minimize the 
effects of not having an initially infinite vertical separation distance between the 
bubbles, the second larger bubble was injected once the small bubble had risen at 
least 25 cm. In order to minimize boundary effects, all interactions were required to 
occur at least 25 cm away from a boundary (sidewalls, the upper free-surface and the 
lower rigid boundary) in order to be included as acceptable data. 

5.2. Experimental results 

In figure 13, we present a series of experimental results which characterize the three 
different possible modes of bubble interactions for &? = 120, 73, 30 and 15. Symbols 
represent data and solid curves are sketched to separate the three modes of interaction. 
The results illustrate that for a given horizontal separation distance, y ,  coalescence is 
more likely if the bubbles have a nearly equal size than a large size difference. For a 
given relative size (fixed aj/ai ,  see figure 12), as the separation distance is increased: 
(i) the bubbles first interact such that the smaller bubble spreads over or ‘coats’ the 
larger bubble (as in figure la), (ii) as the horizontal separation distance is gradually 
increased, the smaller bubble may be advected around the larger bubble and then 
entrained inside the larger bubble (as in figure lb),  and finally (iii) for still greater 
horizontal separation distances, the smaller bubble is advected around the larger 
bubble and coalescence does not occur. 



248 

+ 
Air 

M .  Manga and H .  A.  Stone 

61 cm 

‘4 in. Plexiglas tank filled with corn syrup 

- Tygon tubing 

~ Small bubble 
1 
I radius a, 

, 
I , 
1 
I , 1 

, , 
I 
I 

I I Large bubble I 
radius ai I&\ 

In figure 14 we present experimental measurements for the dimensionless capture 
cross-section y:/(ui + aj)* in equation (5.1) as a function of Bi and the relative bubble 
radius uj /a i ,  which are used to construct an approximate quantitative model for 
bubble coalescence. Results are presented for B = 15, 30, 73 and 120. Solid data 
points indicate interactions which result in coalescence while open symbols denote 
interactions in which no coalescence occurs. Error bars are not shown though they 
are typically less than twice the size of a symbol. Data presented in figure 14 for the 
capture cross-section is subject to an additional constraint : specifically, in addition to 
the restrictions stated in $5.1, we also require that the magnitude of bubble distortion, 
which is predicted by far-field interactions for the measured initial separation distance, 
is less than 10% ( E  < 0.1 as defined by equations (2.6) and (2.7)). Hence, despite 
the large volume of the tank, we could only accept experimental results for a limited 
number of horizontal bubble separation distances, Bond numbers and relative bubble 

FIGURE 13. The mode of bubble interaction as a function of bubble offset, y, and relative bubble 
size, aj/ai, for (a) = 120, (b)  2 = 73, (c )  &? = 30 and ( d )  2 = 15. ‘Coat’ refers to interactions 
as in figure l(a) (shown with the symbol a), ‘entrain’ refers to interactions as in figure l(b) (shown 
with the symbol A), and ‘miss’ refers to interactions in which the bubbles to not coalesce (shown 
with the symbol 0). The solid curves are sketched to separate the three modes of interaction. The 
bubbles are initially separated vertically by at least l0al in (a,b) and 18al in (c,d). 

FIGURE 12. Schematic diagram of the tank used for the experiments presented in $5. The tank 
is made of 3/4 in. Plexiglas. Bubbles are injected from calibrated syringes into the tank through 
tygon tubing connected to one-way valves. The radii of the larger and smaller bubbles are ai and 
aj, respectively, and y ,  is the horizontal separation distance between the bubbles which separates 
trajectories in which the bubbles coalesce from trajectories in which the bubbles miss each other. 

FIGURE 12. Schematic diagram of the tank used for the experiments presented in $5. The tank 
is made of 3/4 in. Plexiglas. Bubbles are injected from calibrated syringes into the tank through 
tygon tubing connected to one-way valves. The radii of the larger and smaller bubbles are ai and 
aj, respectively, and y ,  is the horizontal separation distance between the bubbles which separates 
trajectories in which the bubbles coalesce from trajectories in which the bubbles miss each other. 
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FIGURE 13. For caption see facing page. 
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FIGURE 14. Capture cross-section as a function of W i  and a j /a i :  W = 120 (a), &? = 73 (A), W = 30 
(0) and W = 15 (0). Open symbols denote interactions in which the bubbles do not coalesce 
and solid symbols indicate interactions in which the bubbles coalesce. The solid curves represent 
predictions using equation (5.2). 

sizes. A larger apparatus would be necessary to collect additional data for bubbles 
with large Bond numbers (W = 73 and 120). 

For comparison with the experimental results presented in figure 14, predictions 
from an empirical model of the form 

are shown with solid curves for the four values of the Bond numbers. From equation 
(5.2), in the limit that W + 0 we approximately recover the result of Zhang & Davis 
(1991) for spherical bubbles. Equation (5.2) is not based on analytical results or 
theory, but is nevertheless a useful functional relationship between the capture cross- 
section, y:, the Bond number, and the relative bubble size, which is approximately 
consistent with the experimental data presented in figure 14. Different forms of 
power-law fits were attempted and equation (5.2) provided the best qualitative fit to 
the data, in addition to being proportional to the Bond number as in equation (4.5) 
for monodisperse suspensions. 

For reference, a capture cross-section equal to the sum of the bubble radii, y;/(ai + 
aj)2 = 1, corresponds to spherical bubbles moving vertically with no hydrodynamic 
interactions, in which case smaller bubbles are not advected around larger bubbles. 
From the experimental results shown in figures 13 and 14, we note that the capture 
cross-section may even be larger than the sum of the bubble radii (see also the 
experiments presented in figure 1). 

The dimensionless rate of coalescence is shown in figure 15 for the model described 
by equation (5.1) and the experimentally determined capture cross-section modelled 
by equation (5.2). For comparison, analytical results for spherical bubbles (a = 0) 
from Zinchenko (1982) are shown with small open circles. The rate of coalescence 
of deformable bubbles may be more than one order of magnitude greater than for 
spherical bubbles for a wide range of size ratios, e.g. 0.7 c a,/ai < 1 for W = 10. 
For small aj /a i ,  the effects of deformation are small (although the magnitude of 
deformation may be large, e.g. figure 6), and small bubbles tend to follow streamlines 
and are advected around larger bubbles. As aj /a i  + 1, equation (5.1) predicts no 
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FIGURE 15. Dimensionless rate of coalescence of deformable air bubbles rising in corn syrup based 
on the model described by equations (5.1) and (5.2) for = 0, 0.1, 1 and 10. For comparison, 
analytical results for spherical bubbles (i.e. B = 0) from Zinchenko (1982) are shown with open 
circles. Shape changes due to deformation will result in the eventual coalescence of equal-sized 
bubbles, thus the model described by equations (5.1) and (5.2) underestimates the rate of coalescence 
as aj/ai -+ 1. 

coalescence since the relative velocity of the bubbles Ui - Uj + 0. However, as 
illustrated in figure 11 and discussed in 94, shape changes due to deformation will 
result in the eventual coalescence of equal-sized bubbles. Thus the model described 
by equations (5.1) and (5.2) underestimates the rate of coalescence as aj /a i  + 1. 

6. Population dynamics simulations 
In this section we calculate the size and concentration of buoyant deformable 

bubbles in dilute suspensions. We consider two problems : 
(a) the evolution of the size distribution in an isotropic and homogeneous suspen- 

sion; 
(b)  the evolution of the size distribution and concentration as a function of position 

in a tank of finite size. 
Following the approach of Davis and coworkers (e.g. Zhang et al. 1993), we employ a 
population dynamics model based on two-bubble interactions. In the simulations we 
ignore any boundary or wall effects and consider only the two-particle interactions 
described above. Despite the limitations to the rate of coalescence equation (5.1) and 
the approximate nature of the experimentally based model for the rate of coalescence 
of deformable bubbles, equation (5.2), we apply the model developed in 95 to the 
two problems mentioned above. The problem of calculating dynamics in suspensions 
is difficult, and the results we present are based on experimental data and a theory 
valid for small volume fractions of bubbles, and hence capture qualitatively if not 
quantitatively several of the important and characteristic features of real systems. 

6.1. The population dynamics model 
We discretize the bubble size distribution into discrete intervals of bubble radii. In a 
homogeneous and isotropic suspension the discretized population dynamics equation 
which describes the rate of formation of particles of radius ak is given by (e.g. 



252 

Friedlander 1977) 

M .  Manga and H .  A.  Stone 

m 

% =  l xJ i j  - CJik , 
i+ i=k i= I 
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creation of bubbles loss of bubbles 

where nk is the number of bubbles with radius f f k  per unit volume, and Ji j  is the 
collision-frequency function given by (3.1). The first term on the right-hand side of 
(6.1) represents the creation of bubbles with radius ak due to coalescence of two 
smaller bubbles (the factor of 1/2 accounts for double counting) and the second term 
on the right-hand side of (6.1) represents the loss of bubbles with radius ak due to 
coalescence with other bubbles. 

Numerically, the bubble distribution is represented as a discrete spectrum of sizes 
with N bins of bubble sizes equally spaced in the logarithm of the bubble volume. 
The initial size distribution is assumed to be a normal distribution of the volume 
fraction +(a) about an average bubble radius a,. In all the results presented here the 
standard deviation characterizing the initial distribution is 0 . 2 ~ ~  (e.g. the distribution 
at t = 0 in figure 16). The total volume fraction 4o of bubbles is given by 

A velocity characteristic of interactions is 

so that a characteristic timescale for interactions is 

where a4;' is the typical distance between particles in a dilute suspension. Time in 
the simulations is normalized by t,. 

To solve equation (6.1) for homogeneous isotropic suspensions we choose a di- 
mensionless time step of lop4 and discretize the bubble size distribution so that the 
bubble volume doubles every 5 bins. 

6.2. Isotropic polydisperse suspensions with a homogeneous concentration distribution 
We first consider the evolution of the bubble size distribution in a suspension in which 
the concentration and size distribution of bubbles is initially uniform throughout the 
suspension and which remains uniform at all times. We refer to such a suspension as 
isotropic and homogeneous. This suspension may be characteristic of local dynamics 
for time intervals over which larger bubbles do not rise and separate from the rest of 
the bubbles in the suspension. 

In figure 16 we show the evolution of the bubble concentration in an isotropic 
homogeneous suspension for different Bond numbers. The mean bubble volume as 
a function of time is shown in figure 17. The Bond number labelled on the curves 
and reported in the figure captions is based on the average initial bubble radius a,, 
i.e. go = Apga:/a.  The detailed calculations use equation (5.1) with gi based on 
the radius of bubble i to describe the capture cross-section so that all Bond numbers 
are included in the numerical simulations. As a result of coalescence the average 
bubble radius increases with time. For long times there is a noticeable influence of 
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FIGURE 16. Bubble concentration in an isotropic homogeneous suspension determined by solving 
the population dynamics equation (6.1). The bubble distribution is shown at dimensionless times 
t = 0, 1, 2, 3, 4, 5 and 6, where time is normalized by p/Apga,&. The solid curve corresponds to 
a simulation with go = 0, the dashed curve a simulation with go = 0.01, and the dotted curve a 
simulation with W, = 0.1. The Bond number is based on the average initial bubble radius a,. The 
results with W, = 0.1 are not shown at time t = 6. 
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Time 
FIGURE 17. Average normalized bubble volume as a function of time in isotropic homogeneous 
suspension. Time is normalized by p/Apga,$,. Results are presented for go = 0, 0.01, 0.1 and 1. 
The Bond number is based on the average initial bubble radius a,. 

deformation (B # 0) and a wider range of bubble sizes develops in the suspension 
(compare the solid curve for non-deformable bubbles with the dashed and dotted 
curves for deformable bubbles at times t = 5 and 6). As the average bubble size 
increases, the rate of coalescence increases; since deformation enhances the rate of 
coalescence, the mean bubble volume in suspensions containing deformable bubbles 
increases more rapidly than in suspensions of spherical bubbles, as illustrated in figure 
17. Finally, there is always a peak in the bubble size distribution around a/a,  = 1: 
since the rate of coalescence of bubbles becomes very small as aj/ai + 0 (figure 15), 
then as the average bubble size increases due to coalescence, the smaller bubbles with 
a/a ,  m 1 are less likely to be involved in coalescence events. 
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FIGURE 18. (a) Bubble volume at the top of a tank, measured relative to the initial average bubble 
volume, in an initially homogeneous suspension. Time is normalized by p/Apga,4,. The height of 
the tank is 50a,/4,. (b )  Volume flux of bubbles emerging from the tank, where the volume flux 
is normalized by the value at t = 0. Results are presented for Bo = 0, 0.01, 0.1 and 1. The Bond 
number is based on the average initial bubble radius u,. 

The approximate model for coalescence of deformable bubbles, equation (5.2), is 
based on experimental results for 15 < &? < 120. We might expect that the effect 
of deformation on the rate of coalescence saturates for large Bond numbers. Thus, 
in figures 16 and 17, the simulations are terminated once the Bond number of the 
largest bubbles exceeds 150. 

The general observation in figure 16 that deformation leads to increased polydis- 
persity is a robust qualitative conclusion which follows from the form of the rate 
of coalescence equation (5.2) and illustrated in figure 15. Simulations with different 
power laws for the capture cross-section also result in increased polydispersity. 

6.3. Coalescence and separation in a polydisperse suspension 
In suspensions the larger bubbles rise and separate from smaller bubbles, and bubbles 
may also leave the suspension when they reach the upper surface. Thus, we performed 
a number of simulations in which the bubble concentration varies with vertical 
position. 

For the one-dimensional simulations presented below we model the dynamics by 
discretizing the tank height into L horizontal layers with thickness a, /+,  (Sahagian 
1985). Throughout each layer bubbles of a given size are assumed to be uniformly 
distributed and rise with the Hadamard-Rybczynski speed U,!D) based on the bubble 
radius ai.  The number density of bubbles of radius ai in layer 1 is denoted ny’. 
Bubbles rise from one layer to the next, and the number density evolves according to 
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In the simulations reported below we use L = 200; simulations with larger L produce 
the same results. Bubbles are initially uniformly distributed throughout the tank with 
volume fraction +o, and the total bubble volume fraction in layer 1 is calculated 
according to 

In figure 18 we demonstrate the effect of bubble deformation on the rate of 
separation of bubbles in a tank of height 5 0 a 0 / ~ , .  Results are presented for &lo = 0, 
0.01, 0.1 and 1, and again the reported Bond number is based on the average 
initial bubble radius a,. The rate of coalescence of bubbles is greatest for &lo = 1. 
Consequently, the average bubble volume increases fastest for the system with go = 1, 
and since larger bubbles rise more rapidly, the volume flux of bubbles out of the 
tank also increases most rapidly. The maximum volume flux of bubbles occurs at 
earlier times, and is greater, in systems with deformable bubbles than non-deformable 
bubbles. Thus, the rate of separation of the dispersed phase is increased by allowing 
the dispersed phase to deform. The importance of deformation on the rate of 
separation of the bubbles is highlighted in figure 19 which shows the total bubble 
volume fraction, equation (6.6), as a function of vertical position for deformable 
(go = 1) and non-deformable (go = 0) bubbles. 

In figure 20 we concentrate on the size distribution of bubbles that exists in the top 
layer of the tank for go = 1. The distribution is initially normally distributed about 
a,. For short times, t = 1 and 2, coalescence shifts the size distribution to larger 
sizes. As the larger bubbles rise and leave the tank, the total volume fraction and the 
average size of the bubbles decrease. For long times (e.g. t = lo), the majority of 
bubbles left in the tank have radii less than a,. 

Finally, in figure 21 we consider the effect of tank height on the average size and 
rate of separation of bubbles in the tank. Results are presented for go = 0.1 and 
tank heights 2 5 ~ , / 4 ~ ,  50ao/c$,, 100a0/4, and 250a0/4,. For a given volume fraction 
qbo, the total volume of bubbles is greater in taller tanks, and the corresponding time 
available for interactions is longer so that larger bubbles form. Thus, the maximum 
volume flux of bubbles out of the tank will be larger and the maximum average 
volume of bubbles will also be larger in taller tanks. 

6.4. Limitations of the population dynamics simulations 
Inherent in the simulations are a large number of approximations and assumptions 
that may limit the applicability of the procedure described in Ss6.1 and 6.3 which is 
used to calculate the results presented in figures 16-21 : (i) The collision-frequency 
function and population dynamics model are applicable only in dilute suspensions 
for which two-particle interactions are a useful model for describing evolution of 
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FIGURE 19. Total volume fraction of bubbles, normalized by the initial volume fraction $,, as a 
function of tank height (O=bottom, l=top), at dimensionless times t = 1, 2, 4, 6 and 10. Results 
are presented for 99, = 1 (dashed lines) and go = 0 (solid lines). Time is normalized by p/Apga,$,. 
The height of the tank is normalized by 50a,/$,. The Bond number is based on the average initial 
bubble radius a,. 
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FIGURE 20. The size distribution of bubbles at the top of the tank, at dimensionless times t = 0, 1, 
2, 3, 4, 6 and 10; go = 1. Time is normalized by p/Apga,$,. The height of the tank is 50ao/$,. 
The Bond number is based on the average initial bubble radius a,. 

the microstructure. However, the simulations reported in $2 demonstrate that the 
interactions between many deformable drops may be characterized qualitatively by 
two-drop interactions, so that the dilute limit might be less restrictive for deformable 
drops than for rigid particles. (ii) The collision-frequency model used in the simu- 
lations for deformable bubbles is based on a limited number of experimental data 
and underestimates the rate of coalescence as a j /a i  + 1. (iii) For the finite-volume 
tank simulations we use a one-dimensional model for the bubble distribution, which 
assumes that bubbles are uniformly distributed in each layer at all times and the 
number of bubbles advected out of a layer depends on the concentration of bubbles 
in the layer. The possibility that macroscopic instabilities occur is discussed in $7. (iv) 
Wall and boundary effects are not included. Nevertheless, because we have retained 
most of the important dynamics, we expect that the results presented in figures 1G21 
are qualitatively representative of the evolution of bubble sizes and concentrations in 
dilute suspensions. 
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FIGURE 21. (a) Average normalized bubble volume of bubbles escaping from the top of a tank as 
a function of time in an initially homogeneous suspension. Results presented for tank heights of 
25a,/4,, SOao/&,, 100a,/4, and 250a,/4,; = 0.1. Time is normalized by p/Apga,&,. ( b )  Volume 
flux of bubbles emerging from the tank, where again the volume flux is normalized by the value at 
t = 0. 

7. Concluding remarks 
On the basis of experimental results, numerical calculations, analytical estimates 

and population dynamics simulations, we have shown that the effects of deformation 
lead to an enhanced rate of coalescence of deformable drops and bubbles. The 
rate of coalescence in suspensions of deformable bubbles may be more than one 
order of magnitude greater than the rate of coalescence of non-deformable bubbles. 
Deformation also affects the size distribution in suspensions, resulting in a greater 
range of bubble sizes. 

We have noted several times that the limit of dilute suspensions considered here 
may be less restrictive for a suspension of deformable drops than for spherical drops, 
and a simple geometric argument suggests why this is so. In the limit of large Bond 
numbers the rate of coalescence is largely governed by deformation with magnitude 
which decays as ( a / d ) 2  (equations (2.6) and (2.7)). However, for spherical particles, the 
largest interactions decay as a / d ,  so that the probability of a third particle affecting 
the dynamics will be greater. Hence, the model for coalescence presented here based 
on two-particle interactions should be valid for larger volume fractions of deformable 
drops than the comparable suspension of spherical drops. 

The alignment and coalescence of bubbles may give rise to spatial inhomogeneities 
of bubble concentrations. For example, we might expect that bubble migration due to 
the deformed ellipsoidal bubble shapes will lead to spatial inhomogeneities analogous 
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FIGURE 22. Schematic illustration of the development of spatial variations of bubble concentration 
(after Koch & Shaqfeh 1989). Variations of bubble concentration lead to variations of rise speed 
with respect to the bulk flow and thus local velocity gradients. Velocity gradients deform bubbles 
which then migrate from regions of lower to higher bubble concentration. 

to those which develop in suspensions of ellipsoidal particles (Koch & Shaqfeh 1989). 
The instability arises since spatial variations of bubble concentration produce local 
velocity gradients which deform bubbles. Consequently, deformed bubbles migrate 
from a region of low to high bubble concentration, as schematically illustrated in 
figure 22. Based on the analysis of Koch & Shaqfeh (1989), we expect that the growth 
rate of the instability depends on the magnitude of bubble deformation and thus on 
the Bond number, and therefore we expect that larger bubbles set the lengthscale of 
the instability. Further work is necessary to study the development of such instabilities. 

Finally, we note that the limit studied here, namely large Bond numbers and 
small Reynolds numbers, may be characteristic of bubbles in magmas and lavas (e.g. 
Sahagian 1985; Manga & Stone 1994). 
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Appendix A. Numerical method 
Below we describe details of the numerical procedures employed in this paper 

to study three-dimensional free-boundary problems. A more detailed discussion is 
presented in Manga (1994). 

In the low Reynolds number flow limit, incompressible fluid motion is governed by 
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the Stokes and continuity equations 

V *  T = -Vp+pV2U+pg = 0, (A 1) 

v * u  = 0, (A 2) 
where u is the velocity, p is the pressure, p and p are the fluid viscosity and density, 
respectively, and g is the gravitational acceleration. Here the stress tensor T is defined 
to include the hydrostatic body force in order to define a divergence-free field, 

T = - ( p  - p g  * r) I + p [VU + ( v u ) ~ ]  , 

where r is a position vector. 
Consider a problem involving two drops, as illustrated in figure 23. We use the 

subscript ext to denote the external fluid, and the subscripts 1 and 2 to denote drops 
1 and 2, respectively. We require that the velocity decays to zero far from the drops, 

ueXt --+ 0 as lr[ + co, (A 4) 

u1 = ueXt on S1 and u2 = uext on S2, (A 5) 

and that the velocity is continuous across all interfaces, 

where Si is the surface bounding drop i. The stress jump [n T& across interface i 
is balanced by the density contrast and interfacial tension stresses, which depend on 
the local curvature V, n of the interface: 

(In - 7'J1 = n Text - n - T1 = CT (V, * n)n + nApg * r on S1, (A 6 )  

[[n q, = n Text - n * T2 = CT (V,  n)n + nbpg . r on S2, (A 7 )  
where 0 denotes the constant interfacial tension, n is the unit normal directed into the 
external fluid, and V ,  = ( I  - nn) * V is the gradient operator tangent to the interface. 
Additionally there is a kinematic constraint, which requires that a fluid element on 
a fluid-fluid interface remain on that interface for all time. Formally, the kinematic 
constraint may be expressed with the Lagrangian description 

dr 
- = u(r) 
dt 

for r E S1, S2. 
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FIGURE 24. (a )  The interface is described by a mesh of triangles, with vertices shown by open circles. 
Collocation points at which interfacial velocities are evaluated describe a coarser mesh, shown with 
open squares. (b)  Example of a numerical mesh consisting of 382 collocation points (vertices of 
the triangles in top drop) and 3200 triangular surface elements (bottom drop). The mesh shown 
is from a typical two-drop calculation after 250 time steps, in which the large drop has translated 
more than 7 drop radii and the small drop has translated more than 10 drop radii. Notice that the 
collocation points (top drop) and triangular surface elements (bottom drop) remain well-distributed 
(we redistribute collocation points and triangles every 3 time steps). 

Stokes equations may be recast as integral equations for the interfacial velocities. 
In particular, integral equations of the second kind may be derived for problems 
involving multiple fluid-fluid interfaces (Tanzosh, Manga & Stone 1992). The integral 
equations for a pair of fluid-fluid interfaces are given by 

u(r), r E vat, 

W), r E Vl, 

+(I  + A)u(r), r E S1, I ;(I + A)u(r), r E S2, 

- ( l - A ) / n . K * u d S =  Au(r), r E v2, (A 9) 
s2 

where J and K are known kernels for velocity and stress, respectively (Pozrikidis 
1992). 

In this paper we consider only A = 1, and solve (A9) numerically using a collocation 
approach. Fluid-fluid interfaces are represented numerically by a grid of 2N x M 
triangular surface elements and the interfacial velocities are calculated on a grid 
of n x m collocation points, where n c N and rn < M (see figure 24). In effect, 
two separate numerical meshes are employed: a high-resolution mesh to describe 
the surface and perform integrations (composed of 3200 triangular elements), and a 
second mesh at which velocities are calculated (consisting of 382 collocation points). 
The use of two meshes was found to be the most computationally efficient method 
to achieve a given accuracy. The surface normal, local curvature, and the stress jump 
are assumed to vary linearly over each surface element. Interfacial velocities are 
interpolated linearly between collocation points. Numerical integration is performed 
using 7-point Gaussian integration. Since the Green's functions or kernels for Stokes 
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FIGURE 25. Calculating interfacial tension stresses by contour integration. The unit normal vectors 
to the four triangular surfaces ni surrounding the point of interest are calculated and then averaged 
to calculate n. The interfacial tension stresses are calculated by integrating the unit tangent vector 
t = 1 A n times the interfacial tension around the closed contour C composed of the segments 
11 + 12 + 13 + 14 (Pozrikidis 1994). 

flows are singular, triangular surface elements containing a singularity are integrated 
analytically using expressions given by Rallison (1981) for linear elements. 

An Euler time step is used to update the interface shape - once the interfacial 
velocities are calculated the position of the interface is advected with the local 
velocity field. We use 1000 time steps in the simulations reported here. 

We estimate the normal at all vertices of the triangular surface elements by 
averaging the normals to all the triangular surface elements adjacent to the vertex. 
The interfacial tension stresses can then be evaluated by performing a contour integral 
around the point of interest (following Pozrikidis 1994) 

1 n(V, n)dS = - tdl 1 
where t = I n n  is a unit vector tangent to the surface S which is perpendicular to the 
counterclockwise contour C (see figure 25 for a definition of I ,  n and C). The contour 
integration is performed using a trapezoidal rule. The curvature could be calculated 
to machine precision for spheres and to within 2% for ellipsoids with aspect ratios 
3 :l. Typically this approach to calculating the curvature underestimates it in regions 
of high curvature owing largely to approximating the surface with linear elements. 

Since the initial interface shapes are always spherical, we distribute collocation 
points along lines of latitude and longitude. Thus, the concentration of collocation 
points is greatest near the poles. During the evolution of the interface shape the collo- 
cation points are redistributed at every third time step since they tend to accumulate 
near stagnation points. 

For a spherical drop, interfacial velocities differ by less than 0.15% from the 
Hadamard-Rybczynski result. In Manga (1994) the numerical methods used here 
produced results which were visually indistinguishable when compared with previous 
axisymmetric numerical calculations for two buoyancy-driven drops and the relaxation 
of an initially extended drop. The steady deformation of drops in a shear flow was 
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calculated and found to be in agreement with results calculated by Kennedy et al. 
(1993). 

Appendix B. Experimental uncertainties 
The syringes used to inject the bubbles are calibrated so that the equivalent 

(undeformed) radius of the bubbles can be determined from the volumes of air 
injected from the syringe into the tank. Since air is compressible and the tubing is 
long, the volume of air initially contained in the syringe is always greater than the 
volume of the bubble. A single air bubble is injected into the tank and the rise speed 
is measured when the bubble is far from any boundary. Typical uncertainties of the 
bubble rise speed, based on 10 experiments for a given syringe volume, are less than 
1%. 

The bubble radius may be determined using the Hadamard-Rybczynski formula. 
The uncertainties of the fluid viscosity and density contrast are less than 2% and 
1%, respectively. Thus the uncertainty of the bubble radius will be less than about 
3 4 % .  However, once a rise speed can be associated with a given syringe volume, the 
uncertainty of the relative bubble radii, uj/ai as discussed in $5, can be determined 
independent of the fluid viscosity and density. Typical uncertainties of a,/ai are about 
1 %. 
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